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Intramolecular reactions of organolithium reagents with olefins
have been extensively studied in organic synthesis. One repre-
sentative reaction is the Wittig rearrangement1 of R-alkoxy-
organolithium compounds, which provides a versatile method for
the regio- and stereoselective C-C bond formation along with
the allylic transposition. Another topic is the intramolecular
carbolithiation of olefins,2 which allows regio- and stereoselective
cyclizations. Much attention has recently been paid to asymmetric
variants of these reactions.1b-e,2a-d

In contrast to this, less attention has been paid to the
intramolecular reactions of silyllithium reagents3 with olefins
despite the potential utility for the regio- and stereoselective Si-C
bond formations. Recently, we found two reaction modes for the
intramolecular rearrangements of the [(sec-allyloxy)dimesitylsilyl]-
lithiums,4 as shown in eq 1. One is the [2,3]-sila-Wittig rear-

rangement, the silicon analogues to the [2,3]-Wittig rearrange-
ment,5 that is, the [(allyloxy)silyl]lithium bearing an alkyl group
on the terminus of the olefin undergoes the [2,3]-rearrangement
to afford the (E)-allylsilanes. The other is the cyclopropanation
reaction in which the [(allyloxy)silyl]lithium bearing a phenyl
group on the terminus of the olefin gives the corresponding
substituted cyclopropylsilane as a single diastereoisomer.6 We now
disclose the chirality transfer of these reactions using enantio-
enrichedsec-allylic alcohol derivatives; the center of chirality at
one allylic carbon atom is intramolecularly transferred to the
newly formed stereogenic centers, which leads to optically active
allylsilanes7 and cyclopropylsilane.8,9

We first investigated the 1,3-chirality transfer during the [2,3]-
sila-Wittig rearrangement, as shown in Scheme 1. Treatment of
the [(sec-allyloxy)dimesitylsilyl]stannane10 (S)-(E)-1 (98% ee)
with n-BuLi (2.0 mol amt.) in THF at 0°C for 3 h provided the

allylsilane (R)-(E)-2 in 88% yield with 97% ee.11 In contrast, (S)-
(Z)-1 (98% ee) afforded the allylsilane (S)-(E)-2 in 87% yield
with 96% ee. Thus, the resulting stereochemistry of the new chiral
center significantly depends on the olefin geometry of the
substrate, while the resulting olefin geometry is alwaysE.

These aspects provide an insight into the mechanism,12 as
shown in Scheme 2. For instance, the silyllithium (S)-(E)-3 derived
from (S)-(E)-1 undergoes suprafacial attack on the olefin in the
lower-energy conformer (S)-(E)-3a, to give the observed (R)-(E)-
2, whereas the higher energy conformer (S)-(E)-3b due to the
allylic strain would provide (S)-(Z)-2, but this is not experimen-
tally observed. This is consistent with the general attributes of
the [2,3]-Wittig rearrangement.1a
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Scheme 1a

a (a) n-BuLi (×2), THF, 0°C, 3 h. (b) 5% NH4Cl aq.
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We next applied this chirality transfer technique to the
cyclopropanation reaction, the other reaction mode of the [(sec-
allyloxy)silyl]lithiums,6 in which the sense of chirality at the allylic
position in the substrate would define the absolute configuration
of three stereocenters in the resulting cyclopropane. The results
are shown in Scheme 3. Thus, treatment of the enantio-enriched
(S)-(E)-4 (98% ee)10 with n-BuLi (1.2 mol amt.) in THF at 0°C
for 3 h afforded (1R,2S,3S)-5 in 79% yield with 98% ee.13 Under
the same reaction conditions, (S)-(Z)-4 (98% ee) gave the same
stereoisomer (1R,2S,3S)-5 in 71% yield with 98% ee. The absolute
configuration (1R,2S,3S) of 5 was definitely determined by the
X-ray crystallographic analysis of the ester6 obtained by treatment
with (R)-R-methoxy-R-(trifluoromethyl)phenylacetyl chloride, as
shown in Scheme 4. Thus, the resulting stereochemistry depends
on the absolute configuration of the allylic carbon independent
of the olefin geometry in4, in sharp contrast to the [2,3]-sila-
Wittig rearrangement mentioned above.

The stereochemical course is rationalized as follows.6 An
intramolecularsyn-lithiosilylation via7 proceeds in the initial step,
facilitated by the stabilizing phenyl residue, as shown in Scheme
5. The intermediate8a is formed from (S)-(E)-4 via (S)-(E)-7,

whereas8b results from (S)-(Z)-4 via (S)-(Z)-7. The epimers8a
and8b are expected to be configurationally labile at the benzylic
center and are in equilibrium.2b,c Subsequently, cyclopropanation
of the oxasilacyclobutanes8a and 8b takes place from a
conformation, avoiding steric strain between the phenyl residue
and the mesityl group(s), with inversion at the C-O bond. For
the formation of (1R,2S,3S)-5 from 8a, inversion of the benzylic
center is required, whereas starting from8b, retention leads to
the observed stereochemistry.14

In conclusion, we have achieved the chirality transfer in the
[2,3]-sila-Wittig rearrangement and the cyclopropanation reaction
of the chiral [(sec-allyloxy)silyl]lithiums. While the former
reaction allows the stereoselective formation of one Si-C bond,
the latter reaction allows the stereoselective formation of one C-C
bond in addition to one Si-C bond and can define the absolute
configurations of three stereocenters in the cyclopropane ring.
Since a variety of optically active allylic alcohols are now
available by established methods,15,16 the present method will
widen its variation. The scope and limitations are now under
investigation.
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Scheme 3a

a (a) n-BuLi (×1.2), THF, 0°C, 3 h. (b) 5% NH4Cl aq.

Scheme 4

Scheme 5
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